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Large-Scale Video Understanding with Limited Training Labels
Jingkuan Song, Xu Zhao, Lianli Gao and Liangliang Cao

4.1 Introduction

The challenge of video understanding lies in the gap between large-scale video data and
the limited resource we can afford in both label collection and online computing stages.
This chapter discusses both unsupervised and semi-supervised methods to facilitate
video understanding tasks. In particular we consider two general research problems:
video retrieval and video annotation/summarization. While the former focuses on
designing efficient algorithms for retrieving useful information from large-scale data,
the latter aims to reduce the size of the data. Specifically, video retrieval provides
new models and methods for effectively and efficiently searching through the huge
variety of video data that are available in different kinds of repositories (digital libraries,
Web portals, social networks, multimedia databases, etc.). On the other hand, video
annotation/summarization generates annotations or a short summary of a video.
It provides efficient storage and quick browsing of a large collection of video data
without losing important aspects. Depending on whether or not human labels are
involved, video retrieval and annotation/summarization can be further categorized
into unsupervised and semi-supervised based methods. In this work, we cover video
retrieval and annotation/summarization, two approaches to fight the consequences
of the big video data. We present the state-of-the-art research in each research field.
Promising future trends on big video understanding are also proposed.

4.2 Video Retrieval with Hashing

4.2.1 Overview

With the rapid development of Internet techniques, video capturing devices, and video
editing software, the number of online videos continues to grow at an astonishing speed.
Meanwhile, video-related services, such as video sharing, monitoring, advertising,
and recommendation, inspire online users’ interests and participation in video-related
activities, including uploading, downloading, commenting, and searching. A substantial
number of videos are uploaded and shared on social websites every day.
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Content-based video hashing is a promising direction for content-based video
retrieval, but it is more challenging than image hashing [1–4]. Essentially, the rich
temporal information in videos is a barrier for directly utilizing image-based hashing
methods [5]. A few attempts take a video as a set of images and ignore the temporal
information [6–8]. Although the performance is promising, these methods learn hash
codes for each frame where the structure of a video is not introduced.

Recently, deep learning has dramatically improved the state of the art in speech
recognition, visual object detection and image classification (see chapter 1, ref. [11],
[9, 10]). Inspired by this, researchers have started to apply deep features extracted
from various deep convolutional neural networks (DCNNs) (e.g., VGG (see chapter 1,
ref. [23]) and RestNet (see chapter 3, ref. [60]) to support video hashing. In general, they
first conduct pooling on frame-level deep features to generate video-level features, and
then project these high-dimensional features into low-dimensional hash codes [11].
Although pooling provides a solution for video hashing generation, it inevitably results
in suboptimal binary codes, since video temporal information is significantly ignored.
To capture the temporal information, the recurrent neural network (RNN) is used
to achieve the state-of-the-art performance in video captioning [12, 13]. RNN-based
hashing methods [14] utilize RNN and video labels to learn discriminative hash codes
for videos. However, human labels are time- and labor-consuming, especially for
large-scale datasets. More recently, Zhang et al. proposed self-supervised temporal
hashing (SSTH) [15], which aims to improve video hashing by taking temporal informa-
tion into consideration. They proposed a stacking strategy to integrate long short-term
memory networks (LSTMs) [16] with hashing to simultaneously preserve a video’s
original temporal and spatial information using a short hash code. In this section, we
introduce several video retrieval methods using hashing.

First, we integrate multiple features into hashing to improve the accuracy of hashing
for unsupervised video retrieval. Most existing approaches use only a single feature to
represent a video for retrieval. However, a single feature is often insufficient to charac-
terize the video content. Besides, while the accuracy is the main concern in previous
literature, the scalability of video retrieval algorithms for large-scale video datasets has
been rarely addressed. In this section, we present a novel approach, multiple feature
hashing (MFH), to tackle both the accuracy and the scalability issues of video retrieval.
MFH preserves the local structure information of each individual feature and also glob-
ally considers the local structures for all the features to learn a group of hash functions
which map the video keyframes into the Hamming space and generate a series of binary
codes to represent the video dataset. We evaluate our approach on a public video dataset
and a large-scale video dataset consisting of 132,647 videos, which was collected from
YouTube by ourselves. The experiment results show that the proposed method outper-
forms the state-of-the-art techniques in accuracy.

Then, we propose a method called submodular video hashing (SVH), which can be
either unsupervised or supervised. Unlike the previous methods, which capitalize on
only one type of hash code for retrieval, SVH combines heterogeneous hash codes to
effectively describe the diverse and multi-scale visual contents in videos. Our method
integrates feature pooling and hashing in a single framework. In the pooling stage, we
cast video frames into a set of pre-specified components, which capture a variety of
semantics of video contents. In the hashing stage, we represent each video component
as a compact hash code, and combine multiple hash codes into hash tables for effective
search. To speed up the retrieval while retaining most informative codes, we propose a
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graph-based influence maximization method to bridge the pooling and hashing stages.
We show that the influence maximization problem is submodular, which allows a greedy
optimization method to achieve a nearly optimal solution. Our method is extensively
evaluated in both unsupervised and supervised scenarios, and the results on TRECVID
multimedia event detection and columbia consumer video datasets demonstrate the
success of our proposed technique.

4.2.2 Unsupervised Multiple Feature Hashing

4.2.2.1 Framework
The proposed framework based on MFH [17] for video retrieval is shown in Figure 4.1

and comprises two phases. In the first phase, which is offline, we use the proposed MFH
algorithm to learn a series of s hash functions {h1(⋅), ..., hs(⋅)}, each of which generates
one bit hash code for a keyframe according to the given multiple features. Each keyframe
has s bits. Using the derived hash functions {h1(⋅), ..., hs(⋅)}, each keyframe for a dataset
video can be represented by the generated s-sized hash codes in linear time. In the sec-
ond phase, which is online, the query video’s keyframes are also represented by s-sized
hash codes mapped from the s hash functions. Video retrieval can be efficiently achieved
where only efficient XOR operation on the hash codes is performed to compute the sim-
ilarity between two videos.

The key research issue is how to train the hash functions which affect both accuracy
and efficiency. In this section, we detail the proposed MFH algorithm. It is worthy noting
that MFH is a general one which can be potentially applied to other large-scale search
applications where the data are represented by multiple features.

4.2.2.2 The Objective Function of MFH
Let 𝑣 be the number of features.1 Given an integer g ≤ 𝑣, (xg)t ∈ ℝdg∗1 denotes the
gth feature of tth training data, where dg is the dimensionality of the gth feature.
Suppose there are n training keyframes in total. Xg = [(xg)1, (xg)2, ..., (xg)n] ∈ ℝdg∗n

is the feature matrix corresponding to the gth feature of all the training data.
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Figure 4.1 The proposed framework for video retrieval.

1 In our system, each keyframe is represented by the local feature Local binary pattern (LBP) and the global
feature hue, saturation, value (HSV) color histogram. Therefore, 𝑣 = 2 here. Yet, MFH is able to deal with
more feature types when 𝑣 > 2.
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xt = [(x1)T
t , (x2)T

t , ..., (x𝑣)T
t ]T ∈ ℝd×1, where d =

∑𝑣

g=1 dg is the vector representation
of the tth training keyframe using all of the features and X = [x1, x2, ..., xn] ∈ ℝd∗n.
MFH aims to learn a series of hash functions {h1(⋅), ..., hs(⋅)}, where s is the number of
hash functions, i.e., the length of the hash code. Each of the s hash functions generates
one bit hash code of the input keyframe. We further denote Y = [(y1)T , ..., (yn)T ]T∈n×s

as the hash codes of the training keyframes corresponding to all features and
Y g = [(yg

1)
T , ..., (yg

n)T ]T∈n×s as the hash codes of the training keyframes derived from
the gth feature.

To exploit the individual structural information of each individual feature, we define
𝑣 affinity matrices Ag ∈ ℝn×n (1 ≤ g ≤ 𝑣), one for each feature as follows:

(Ag)pq =
{

1, if (xg)p ∈ k((xg)q) or (xg)q ∈ k((xg)p)
0, else (4.1)

where k(⋅) is the k-nearest-neighbor set and 1 ≤ (p, q) ≤ n.
To learn the hash codes (yg)t from the gth feature, a reasonable criterion is that similar

items in the original space should have similar binary codes, which can be formulated
as the following minimization problem:

min
Y g

n∑

p,q=1
(Ag)pq‖(yg)p − (yg)q‖

2
F . (4.2)

Given a training keyframe xt , the overall hash codes yt should be consistent with the
hash codes yg

t |
𝑣

g=1 derived from each feature. In this way, the local structure information
on each single feature is also globally considered and optimized. Therefore, we have the
following minimization problem:

min
Y g ,Y

𝑣∑

g=1

n∑

p,q=1
(Ag)pq‖(yg)p − (yg)q‖

2
F + 𝛾

𝑣∑

g=1

n∑

t=1
‖yt − (yg)t‖

2
F (4.3)

where 𝛾 is the parameter to balance the two parts. It is easy to see from Eq. 4.3 that the
individual manifold structure of each feature type is preserved (the first term) and all the
manifold structures are also globally considered in the optimization (the second term).

Recall that we intend to learn the hash codes of the training keyframes and a series
of hash functions {h1(⋅), ..., hs(⋅)} in a joint framework. We propose to simultaneously
learn the hash codes of the training keyframes and the hash functions by minimizing
the empirical error of the hash functions w.r.t. the learned hash codes Y . The proposed
final objective function of MFH is given by:

min
Y ,Y g ,W ,b

𝑣∑

g=1

n∑

p,q=1
(Ag)pq‖(yg)p − (yg)q‖

2
F + 𝛾

𝑣∑

g=1

n∑

t=1
‖yt − (yg)t‖

2
F

+ 𝛼(‖XT W + 𝟏b − Y‖2
F + 𝛽‖W‖2

F)
s.t. yt ∈ {−1, 1}s, (yg)t ∈ {−1, 1}s,Y Y T = I (4.4)

where 𝛼 and 𝛽 are the parameters, 𝟏 ∈ ℝn×1 is a column vector with all ones, and ytl is
lth bit hash code for xt . In Eq. 4.4, yt ∈ {−1, 1}s and (yg)t ∈ {−1, 1}s force the hash codes
of yt and (yg)t to be binary codes. As we will show later on, the constraint Y Y T = I is
imposed to avoid the trivial solution. For the simplicity of implementation for large-scale
datasets, we adopt the linear transformation as the hash function. More specifically,
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given a keyframe represented by its feature xt , 𝑤l ∈ ℝd×1 is the transformation matrix
and bl ∈ ℝ is the bias term. W =[w1, w2, . . . , ws] ∈ ℝd×s, b =[b1, b2, . . . , bs] ∈ ℝ1×s

and 𝟏 is a vector of all ones.

4.2.2.3 Solution of MFH
In this subsection, we detail the approach to optimize the objective function of MFH.
By setting the derivative of Eq. 4.4 w.r.t. b and W to zero, we get:

b = 1
n
(𝟏T Y − 𝟏T XT W ), W = (XLcXT + 𝛽I)−1XLcY , (4.5)

where Lc = I − 1
n
𝟏𝟏T is the centering matrix. Note that Lc = (Lc)T = Lc(Lc)T . Replacing

W and b by Eq. 4.5, we have

XT W + 𝟏b − Y = XT W + 𝟏1
n
(𝟏T Y − 𝟏T XT W ) − Y

= LcXT W − LcY = LcXT (XLcXT + 𝛽I)−1XLcY − LcY (4.6)

Let M = (XLcXT + 𝛽I)−1. ‖XT W + 𝟏b − Y‖2
F + 𝛽‖W‖2

F can be rewritten as:

‖XT W + 𝟏b − Y‖2
F + 𝛽‖W‖2

F = trY T BY , B = (Lc − LcXT (XLcXT + 𝛽I)−1XLc)
(4.7)

Meanwhile, we have
n∑

p,q=1
(Ag)pq‖(yg)p − (yg)q‖

2
F = tr ((Y g)T LgY g) (4.8)

where Lg = Ng − Ag is the Laplacian matrix of the gth feature and Ng is the diagonal

matrix with its diagonal element Ng
ii =

∑
jA

g
ij. Note that

𝑣∑

g=1

n∑

t=1
‖yt − (yg)t‖

2
F can also be

written as
∑𝑣

g=1‖Y − Y g‖2
F . Then the objective function shown in Eq. 4.4 becomes

min
Y ,Y g

𝑣∑

g=1
(tr((Y g)T LgY g) + 𝛾‖Y − Y g‖2

F ) + 𝛼tr(Y T BY )

s.t. Y T Y = I (4.9)

Setting the derivative of Eq. 4.9 w.r.t. Y g to be zero, we have

2LgY g − 2𝛾(Y − Y g) = 0 ⇒ Y g = 𝛾(Lg + 𝛾I)−1Y (4.10)

Let Cg = 𝛾(Lg + 𝛾I)−1. Note that Cg = (Cg)T . Then we arrive at

Y g = CgY (4.11)

Replacing Y g with Eq. 4.11, the objective function in Eq. 4.9 becomes:

min
Y Y T=I

tr(Y T DY ) (4.12)

where D is defined as

D =
𝑣∑

g=1
(CgLgCg + 𝛾(I − Cg)2) + 𝛼B = 𝛾

𝑣∑

g=1
(I − Cg) + 𝛼B (4.13)
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Algorithm 4.1 The MFH algorithm.

for g = 1 to v do
for p = 1 to n do

for q = 1 to n do
Compute Lg

p,q according to Eq. 4.8;
end for

end for
end for
Compute B according to Eq. 4.7;

Compute D according to Eq. 4.13;
Compute Y by performing eigenvalue decomposition on D.
Output W and b according to Eq. 4.5.

The optimization problem shown in Eq. 4.12 can be solved by performing the
eigen-value decomposition of D. Y can be obtained by the s eigenvectors of D
corresponding to the s smallest eigenvalues.2 In summary, the training processing of
the proposed MFH algorithm is listed as follows.

Once W and b are obtained, they can be readily used to generate the hash codes of
database keyframes as well as query keyframes. For example, given a keyframe xt , we
first compute its relaxed hash code yt in continuous domain by yt = W T xt + b. Then,
we binarize it by comparing each dimension of yt with its median of all dimensions. If
it is greater than the median, we set it as 1. Otherwise, we set it as −1. To represent
a video clip, Wu et al. proposed averaging the visual feature of all its keyframes as the
representation of the whole video clip [18]. Following Wu’s way, we can also generate
the hash codes for a video clip by averaging the relaxed codes of all its keyframes and
then binarizing them. As a result, each video clip is represented by a single s-bit hash
code. In this work, we use the above video representation to avoid pairwise keyframe
comparisons. The number of common bits along all dimensions shared by two videos is
approximated as the video similarity.

4.2.2.3.1 Complexity Analysis
In the previous subsections we proposed a multi-feature hashing algorithm MFH for
near-duplicate video retrieval (NDVR). During the training phase, to compute the
matrix Ag

1, we need to perform a k-nearest-neighbors search for each feature type
whose time complexity is O(k × n2). Since we have 𝑣 feature types, the time complexity
is O(𝑣 × k × n2). Because 𝑣 ≪ n and k ≪ n, the time complexity for computing Ag

1 is
O(n2). To compute the matrix Ag

2, we need to search the n training data points for each
data point whose time complexity is O(n2). Also, we need to perform an eigenvalue
decomposition to get Y , whose time complexity is n3. Then, we need to solve a linear
system when computing W and b, whose time complexity is O(n2) approximately.
Therefore, the time complexity for the training of MFH is O(n3) approximately. Once
the hash functions, i.e., W and b, are obtained, we only need to compute the hash code

2 The trivial solution corresponding to the eigenvalue of zero is removed.
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to map the whole database into the Hamming space with a linear time complexity.
All of the above steps are done offline.

4.2.3 Submodular Video Hashing

4.2.3.1 Framework
The proposed framework based on SVH for video retrieval is shown in Figure 4.2,

which comprises two phases. In the first phase, which is the pooling stage, we cast video
frames into a set of pre-specified components, which capture a variety of semantics of
video contents. In the second stage, which is the hashing stage, we represent each video
component as a compact hash code, and combine multiple hash codes into hash tables
for effective search.

4.2.3.2 Video Pooling
The basic idea of our hashing algorithm is to exploit the rich semantics of videos and
construct binary codes corresponding to different characteristics of video contents. Our
methods contrast with previous image-based hashing methods by considering video fea-
ture pooling in frame-level. Suppose there is a video with T frames, where each frame is
represented by a feature vector xt . We generate the temporal pooling component k as:

zk =
T∑

t=1
pk

t xt (4.14)

Here pk
t stands for the probability Pr(k|xt) that captures the amount of contribution of

frame t in forming the scene component k. We approximate the probability using soft

Video
components:

Hash codes:

Video

Scene 1

Pooling

Hashing

S1

Scene 2

Pooling

··· ···

··· ···

··· ···

Hashing

S2

Scene K

Pooling

Hashing

SK

Figure 4.2 The proposed framework of SVH for video retrieval.
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vector quantization on GIST features. From Eq. 4.14, we can see that to obtain differ-
ent scene components zk =

∑T
t=1 pk

t xt , in fact is equivalent to decomposing each frame
feature xt into different scenes

xt → [p1
t xt, p2

t xt , ...], (4.15)
From Eqs 4.14 and 4.15 one can see that our new model is a feature pooling method
[19]. The unique characteristic of our method is that our pooling weights pk

t are on video
frames instead of the spatial domain. Here we force the pooling weights pk

t to follow the
constraint

∑
kpk

t = 1. We use GIST features to represent the scenes of video frames and
then to compute pk

t . Note that the pooling weights are computed based on Euclidean
distance, which is not reliable for sparse histogram features like scale-invariant feature
transform (SIFT). On the other hand, GIST is easy to compute and gives a reliable mea-
sure of how different two frames look holistically (see chapter 1, ref. [29]). With all the
training data, we compute the GIST features for all frames and cluster them into C cen-
ters using the K-means algorithm where the number of C is empirically set. The C center
is represented as g1

c , g2
c , ..., gC

c . To compute the pooling weight pk
t for frame t in a training

or test video clip, we extract it GIST feature vector gt . The pooling weight is derived by
comparing gk

c and gt . One simple way to compute pooling weights is by vector quanti-
zation (VQ), which forces all but the nearest pk

t to be zero. However, VQ is well-known
to be sensitive to noises. Here, we consider the soft voting pooling weights as

pk
t =

1∕(dk
t )3

∑C
l=1 1∕(dl

t)3
(4.16)

where dk
t is the Euclidean distance between centers gk

c and frame feature gt . It is not
difficult to see that our pooling weights satisfy the constraint

∑
kpk

t = 1.

4.2.3.3 Submodular Video Hashing
Suppose we have nf features indexed by f = 1, ..., nf , where each (f ) is captured by mul-
tiple (C) components (𝑣1

f , ..., 𝑣
C
f ) and each component (𝑣j

f ) is expressed by a compact
binary hash code1. Our first observation is that not every code is equally informative and
there can be significant redundancy among the codes. On the other hand, it is critical
to use compact representation for large-scale video retrieval. Inspired by these observa-
tions, we aim to select a small number of “informative” codes which can well “represent”
the entire set of codes. We found these concepts can be effectively modeled using a
graph over the codes whose edge weights capture the degree of overlapping or similar-
ity between pairwise codes. In this section, we assume that the mechanism to compute
pairwise code similarity is known (which will be addressed in the next subsection).

Let 𝔾 = {𝕍 ,W} be a graph with node set 𝕍 consisting of the hash codes considered,
i.e., 𝕍 = {𝑣k

f |k = 1, ...,C; f = 1, ..., nf }, and similarity matrix W = [𝑤ij], where 𝑤ij cap-
tures the similarity between codes i and j. Our goal is to select m representative nodes
from the graph, where m can be manually specified or determined automatically. We
cast this node selection problem as an influence maximization problem where the influ-
ence of the selected m nodes can be maximally propagated to the rest of the nodes in
the graph.

Denote 𝔸 as the set of selected nodes whose influences are assigned and fixed to 1’s.
We use a score u𝔸(i) ∈ [0, 1] to quantify the influence node i received from 𝔸. For tech-
nical reason, that will be clear soon, we introduce a sink node s to the graph that is
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connected to each node with a small constant weight. The sink node s is very “cool” in
that it is never influenced by others or tries to influence others. So its influence is fixed to
0. For simplicity and a little abuse of notations, we still denote the graph as 𝔾 = {𝕍 ,W}
but keep in mind that s ∈ 𝕍 and W is expanded accordingly. We also denote 𝔸̂ = 𝔸 ∪ s
and𝔸 as the set of remaining nodes, i.e., 𝔸̂ ∩ ℕ = ∅ and 𝔸̂ ∩ ℕ = 𝕍 . Formally, we propose
the following influence maximization framework:

max
𝔸⊂𝕍

𝛺(𝔸) ∶=
∑

i∈ℕ
u𝔸(i) (4.17)

To instantiate the above framework, a concrete model for influence propagation is
needed. Specifically, we use the concept of harmonic fields from Zhu et al. [20], which
has been shown to be a highly effective label propagation model. Denote u𝔸(i) = 1 if
i ∈ 𝔸 and u𝔸(s) = 0. Our influence model enjoys a “harmonic” interaction among the
nodes as follows:

u𝔸(i) =
1
di

∑

j∈ℕ(i)
𝑤iju𝔸(j), i ∈ ℕ (4.18)

where ℕ(i) denotes the set of neighbors of node i and di =
∑

j∈ℕ(i)𝑤ij is the degree of
node i. In other words, the influence on node i is the weighted sum of the influences on
its neighbors.

Since our objective function (4.17) for the hash function selection problem is submod-
ular [8], we can obtain a nearly optimal combination of hash codes by a greedy algorithm.
We start from an empty set A0 ∶= ∅ and iteratively add a code y to 𝔸i that maximizes
the increase in influence of 𝛺. Specifically, we select the node yi+1 in step i + 1 using the
following criterion:

yi+1 = argmax
y∈ℕi

Ω(𝔸i ∪ {y}) − Ω(𝔸i) (4.19)

4.2.4 Experiments

We experimentally evaluated the performance of MFH and SVH and compared it with
existing state-of-the-art methods.

4.2.4.1 Experiment Settings

4.2.4.1.1 Video Datasets
We used two datasets in the experiments.

The CC_WEB_VIDEO Dataset [21] is provided by City University of Hong Kong
and Carnegie Mellon University. It consists of 24 sets of video clips (13,129 video clips
in total) downloaded from video-sharing websites.

The Combined Dataset is a larger video dataset created by ourselves by adding
CC_WEB_VIDEO to our video dataset downloaded from YouTube.

4.2.4.1.2 Visual Features
In the CC_WEB_VIDEO dataset, a shot-based sampling method was used to extract
a total of 398,078 keyframes. These keyframes are provided in the dataset. We further
extracted the LBP feature on the keyframes as a local feature, which will be used together
with the existing global feature HSV provided by the dataset.
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In the Combined Dataset, we firstly detected the shots from which the keyframes were
extracted. Then we extracted two features for each keyframe, HSV and LBP, to be used
as a global feature and a local feature, respectively. HSV is a global color histogram with
162 dimensions and LBP is a local content feature with 256 dimensions.

4.2.4.1.3 Algorithms for Comparison
To evaluate video retrieval accuracy and efficiency, we present an extensive comparison
of the proposed method with a set of existing video retrieval methods, which are briefly
described as follows.

We use the global color histogram method as a baseline method. Each keyframe
is represented as a color histogram feature vector. Each video is finally defined as a
feature vector of a normalized color histogram over all the keyframes in the video.
We also compared the proposed method with the local feature based method [18],
the spatiotemporal feature based method [22], self-taught hashing [23] and spectral
hashing [24].

Following the work in [22], we also adopted the mean average precision (MAP) metric
to evaluate the performance. We further used a precision-recall curve to evaluate the
performance on both datasets.

4.2.4.2 Results

4.2.4.2.1 CC_WEB_VIDEO
We first tested different methods on the CC_WEB_VIDEO dataset. The same 24 queries
as in [18, 22] were used. The MAP results of different methods can be seen in Table 4.1.

From Table 4.1, we can see that the proposed MFH achieves the best results on MAP,
although the margins are minor. This is probably because the dataset is not big enough
and thus less noise can be introduced for most methods. The performance of different
methods cannot be fully explored. Next, we focus on the large dataset.

4.2.4.2.2 Combined Dataset
To further test the accuracy and scalability of MFH, we tested MFH on the Combined
Dataset and compare it with existing methods. More specifically, we used the same 24
queries and ground truth as in [18, 22] to search the whole Combined Dataset. Several
parameters need to be tuned for some of the algorithms. For each parameter we have
a set of candidate values and we iteratively combined the parameters to form various
parameter settings. For each parameter combination we ran the same experiment to
evaluate its impact on the performance. Finally, the parameter setting which results in
the best performance was selected for each method. For the parameters in MFH, SPH
and STH, including 𝛾 ,𝛼,𝛽, we tuned them from 10−6, 10−3, 100, 103, 106 and tuned the

Table 4.1 Comparison of MAP on CC_WEB_VIDEO.

Methods GF LF ST_lbp ST_ce MFH

MAP 0.892 0.952 0.953 0.950 0.954

GF, global feature; LF, ST_lbp, ST_ce, MFH, see [18] and [22].
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Table 4.2 Comparison of MAP and time for the
Combined Dataset.

Methods MAP Time(s)

SPH 0.5941 0.4907
GF 0.6466 1.3917
STH 0.7536 0.6439
MFH_lbp 0.7526 0.6445
MFH_hsv 0.8042 0.4508
MFH 0.8656 0.5533

GF, global feature; SPH, (see chapter 9, ref. [24]); STH,
see [23]; MFH, see [7].

length of the binary code from 200 to 400. On this large Combined Dataset, we cannot
compare with the local feature based method LF proposed in [18] because this method
utilizes interest points matching to measure the similarity of two keyframes. This is
impractical in such a large dataset with 2,570,554 keyframes. We were also unable
to extract the spatiotemporal features ST_lbp and ST_ce because it would take an
extremely long time for our computer to extract the features from 132,647 videos. As a
result, only the GF, STH, SPH, MFH_hsv, MFH_lbp, and MFH methods are compared.

The results for MAP and search time are shown in Table 4.2. We have the following
observations:

• MFH achieves the highest MAP and outperforms existing methods by a large margin.
MFH can have more than 86% MAP, while SPH has less than 60% MAP.

• SPH, STH, and MFH all construct binary codes for the videos and perform the search
using the Hamming space. Even in the Matlab environment they can search the large
dataset within 1 second. However, SPH’s performance is really unsatisfactory prob-
ably because the video dataset is not in accordance with the assumption that all the
data points are uniformly distributed in a hyper-rectangle in high-dimensional space.
This also shows that MFH is more capable of preserving local data distribution infor-
mation.

• GF performs the search using the Euclidean distance and its performance is not good.
Its accuracy is much worse than that of MFH. Furthermore, its search time is two to
three times longer than that of the hashing methods.

• MFH outperforms MFH_lbp and MFH_hsv in general, which demonstrates the effec-
tiveness of combining multiple features in video retrieval.

4.2.4.3 Evaluation of SVH
We also experimentally evaluated the performance of SVH and compare it with existing
state-of-the-art methods on two datasets.

The TRECVID Multimedia Event Detection (MED 2011) dataset is a large anno-
tated dataset specifically designed to model complex video events. The evaluation of
MED is separated into two test sets: the mid-size dryrun evaluation and the large final
evaluation set.
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The Columbia Consumer Video (CCV) dataset [25] contains 9317 YouTube videos
over 20 semantic categories.

We applied the unsupervised measure for the MED dataset and the semi-supervised
measure for CCV dataset. Since each video in the CCV dataset is assigned a label from
20 semantic categories, we evaluated retrieval performance for all categories.

4.2.4.3.1 Results
MED dataset The results in Figure 4.3a show that our submodular hashing method is
significantly better. This confirms the crucial benefit of employing multiple scene com-
ponents for video representation and the submodular selection strategy for hash table
construction The results also show that the performance of low-level features such as
LBP and color histogram are inferior to SIFT histogram, which motivated us to focus
on powerful features like SIFT and its variants in the final run.

The results for the final evaluation dataset are shown in Figure 4.3b, which shows
that semantic feature vectors work better than SIFT features for video retrieval, but our
submodular hash methods still clearly boost the performance over these features. The
results also show that random projection works better than spectral hashing, which is
probably because the objective function of spectral hashing applies to the Hamming dis-
tances between all the samples, of which a large proportion has been ignored in our hash
table structure. Despite that, the contributions of the video component and submodular
selection are consistent in both cases.

In this dataset, we employed three features: sparse sift, dense sift, and pyramid
histogram of oriented gradients (PHOG). Since the similarity of different hash codes
depends on the category label, we also compared the retrieval performance for each
category. To make a fair comparison, we report the results using four hash tables. The
average recall is used to measure retrieval accuracy, as we did on the MED dataset. As
shown in Figure 4.4, our submodularity based video hashing is consistently better than
hashing accumulated video features.
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Figure 4.4 Video retrieval performance on the CCV dataset.

4.3 Graph-Based Model for Video Understanding

4.3.1 Overview

Recently, we have witnessed an exponential growth of user-generated videos and
images due to the booming use of social networks such as Facebook and Flickr.
There are also some well-known public datasets for large-scale video understand-
ing [26]. Consequently, there are increasing demands to effectively organize and
access these multimedia data via annotation/summarization. While video retrieval
provides methods for effectively and efficiently searching through the huge variety
of video data that are available in different kinds of repositories, video annota-
tion/summarization/captioning generates annotations or a short summary of a video.
It provides efficient storage and quick browsing of large collection of video data without
losing important aspects.

Graph-based learning is an efficient approach for modeling data in various machine
learning schemes, i.e., unsupervised learning [27, 28], supervised learning [29], and
semi-supervised learning (SSL) [28, 30]. An important advantage of working with a
graph structure is its ability to naturally incorporate diverse types of information and
measurements, such as the relationship between unlabeled data, labeled data, or both
labeled and unlabeled data.

By exploiting a large number of unlabeled data with reasonable assumptions, SSL
can reduce the need for expensive labeled data and thus achieve promising results,
especially for noisy labels. The harmonic function approach [20] and local and global
consistency (LGC) [31] are two representative graph-based SSL methods. The harmonic
function approach [20] emphasizes the harmonic nature of the energy function and
LGC considers the spread of label information in an iterative way. While these two
methods are transductive, manifold regularization (MR) [32] is inductive. In practice,
MR extends regression and SVM to SSL methods such as Laplacian regularized least
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squares (LapRLS) and Laplacian support vector machines (LapSVM), respectively. By
adding a geometrically based regularization term [33]. In [34], a so-called correlation
component manifold space learning (CCMSL) was developed to learn a common
feature space by capturing the correlations between heterogeneous databases. In [35],
a content similarity based fast reference frame selection algorithm was proposed
for reducing the computational complexity of the multiple reference frames based
inter-frame prediction.

First, we propose to annotate videos in a semi-supervised way. Specifically, we propose
learning an optimal graph (OGL) from multi-cues (i.e., partial tags and multiple fea-
tures), which can more accurately encode the relationships between data points. Then,
we will incorporate the learned optimal graph with the SSL model and further extend
this model to address out-of-sample extension and noisy label issues.

We specifically address the problem of annotating actions in videos using a
graph-based model. We present a context-associative approach to recognize activity
with human-object interaction. The proposed system can recognize incoming visual
content based on the previous experienced activities.

Finally, we address the problem of video summarization. We have developed a novel
approach, termed event video mashup (EVM), to automatically generate a unified short
video from a collection of Web videos to describe the storyline of an event. To advance
research on animated GIF understanding, we collected a new dataset, Tumblr GIF
(TGIF), with 100K animated GIFs from Tumblr and 120K natural language descriptions
obtained via crowdsourcing.

4.3.2 Optimized Graph Learning for Video Annotation

4.3.2.1 Framework
In this section we introduce our OGL method [36], which consists of two phases (see
Figure 4.5). First, a similarity graph is constructed on each feature (multiple feature
graph) and also on the partial tags (partial label graph) to exploit the relationship among
the data points. Partial tags means that tags are provided only for a part of the training
data. Then, optimal graph learning is applied to these graphs to construct an optimal
graph, which is integrated with SSL for the task of image and video annotation. Note
that in theory our approach can be integrated with all kinds of graph-based algorithms.

4.3.2.2 OGL

4.3.2.2.1 Terms and Notations
We first introduce the notations which will be used in the rest of the section.
X = {x1, x2, ..., xn} represents a set of n images, yi = {0, 1}c is the label for the ith image
(1 ≤ i ≤ n), and c is the number of annotations/classes. The first l points xi (i ≤ l) are
labeled as Yl, and the remaining u points xi (l + 1 ≤ i ≤ n) are unlabeled. The goal of
transductive graph-based SSL is to predict the label Fu of the unlabeled points. Define

a n × c matrix F =
[

Fl
Fu

]

with Fl = Yl and Fu = {0}u∗c.

Suppose that for each image, we have 𝑣 features. Let Xt = {xt
i}

n
i=1 denote the feature

matrix of the tth view of training images, where t ∈ {1, ..., 𝑣}.
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Figure 4.5 The overview of OGL.

4.3.2.2.2 Optimal Graph-Based SSL
The traditional graph-based SSL usually solves the following problem:

min
F ,Fl=Yl

∑

ij
‖fi − fj‖

2
2sij (4.20)

where fi and fj are the labels for the ith and jth images, and S is the affinity graph with each
entry sij representing the similarity between two images. The affinity graph S ∈ ℝn×n is
usually defined as follows:

sij =
{

e−‖xi−xj‖
2
2∕2𝜎2

, if xi ∈ K (xj) or xj ∈ K (xi)
0, else (4.21)

where K (⋅) is the K nearest-neighbor set and 1 ≤ (i, j) ≤ n. The variance 𝜎 will affect
the performance significantly and is usually empirically tuned. Also, the similarity graph
is often derived from a single information cue. To address these issues, we propose to
learn an optimal graph S from multiple cues.

The multiple cues include the given label information F and the multiple features Xt =
{xt

i}
n
i=1. An optimal graph S should be smooth on all these information cues, which can

be formulated as:

min
S,𝛼

g (F , S) + 𝜇

𝑣∑

t=1
𝛼th (Xt, S) + 𝛽r (S, 𝛼) (4.22)
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where g (F , S) is the penalty function to measure the smoothness of S on the label
information F and h (Xt , S) is the loss function to measure the smoothness of S on the
feature Xt . r (S, 𝛼) are regularizers defined on the target S and 𝛼. 𝜇 and 𝛽 are balancing
parameters, and 𝛼t determines the importance of each feature.

The penalty function g(F , S) should be defined in such a way that close labels have high
similarity and vice versa. In this section, we define it as follows:

g(F , S) =
∑

ij
‖fi − fj‖

2
2sij (4.23)

where fi and fj are the labels of data points xi and xj. Similarly, h(Xt , S) can be defined as:

h(Xt , S) =
∑

ij
‖xt

i − xt
j‖

2
2sij (4.24)

Note that for simplicity we use the distance-based method to learn the similarity graph
here. Other options based on reconstruction coefficients methods can be utilized
to achieve better performance, which is discussed in the next section. Instead of
preserving all the pairwise distances, we consider preserving the pair distances of the
K nearest-neighbors here, i.e., if xt

i and xt
j (or fi and fj) are not K nearest-neighbors of

each other, their distance will be set to a large constant. The regularizer term r(S, 𝛼) is
defined as:

r(S, 𝛼) = 𝜇𝛾

𝛽
‖S‖2

F + ‖𝛼‖2
2 (4.25)

We further constrain that S ≥ 0, S𝟏 = 𝟏, 𝛼 ≥ 0 and 𝛼T𝟏 = 𝟏, where 𝟏 ∈ ℝN×1 is a col-
umn vector with all ones. Then we can obtain the objective function for learning the
optimal graph by replacing g(F , S), h(Xt, S) and r(S, 𝛼) in Eq. 4.22 using Eqs. 4.23, 4.24
and 4.25. By combining Eq. 4.20 with Eq. 4.22, we can obtain the objective function for
optimal-graph based SSL, as follows:

min
S,F ,𝛼

∑

ij
‖fi − fj‖

2
2sij + 𝛽‖𝛼‖2

2 + 𝜇

(
∑

tij
(𝛼t‖xt

i − xt
j‖

2
2sij) + 𝛾‖S‖2

F

)

s.t.
{

S ≥ 0, S1 = 1, Fl = Yl, 𝛼 ≥ 0, 𝛼T 1 = 1 (4.26)

4.3.2.2.3 Iterative Optimization
We propose an iterative method to minimize the above objective function in Eq. 4.26.
First, we initialize S =

∑
tSt∕𝑣 with each St being calculated using Eq. 4.21, and we ini-

tialize 𝛼t = 1∕𝑣. We further normalize S as S = (D1∕2)T SD1∕2. Once these initial values
are given, in each iteration, we update F given S and 𝛼, and then update S and 𝛼 by fixing
the other parameters. These steps are described below.

Update F By fixing S and 𝛼, we can obtain F by optimizing Eq. 4.26. This is equivalent
to optimizing the following objective function:

min
F ,Fl=Yl

∑

ij
‖fi − fj‖

2
2sij = min

F ,Fl=Yl

‖F(I − S)FT‖2
F (4.27)
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where I is an identity matrix. Let L = I − S, and differentiate the objective function in
Eq. 4.27 with respect to F , to obtain:

LF = 0 ⇒

[
Lll Llu
Lul Luu

] [
Fl
Fu

]

= 0, ⇒ LllFl + LluFu = 0, LulFl + LuuFu = 0 (4.28)

Then we can obtain:

F∗
u = −Luu

−1LulFl (4.29)

Update S By fixing F and 𝛼, we can obtain S by optimizing Eq. 4.26. This is equivalent
to optimizing the following objective function:

∑

ij
‖fi − fj‖

2
2sij + 𝜇

∑

tij
(𝛼t‖xt

i − xt
j‖

2
2sij) + 𝜇𝛾‖S‖2

F (4.30)

and it is equivalent to:

min
S,S≥0,S1=1

∑

i

‖
‖
‖
‖

si +
ai + 𝜇bi

2𝜇𝛾
‖
‖
‖
‖

2

2
(4.31)

where bi = {bij, 1 ≤ j ≤ n} with bij =
∑

t
𝛼t‖xt

i − xt
j‖

2
2 and ai = {aij, 1 ≤ j ≤ n} ∈ R1×n

with aij = ‖yi − yj‖
2
2.

The problem in Eq. 4.31 is simplex and we use the accelerated projected gradient
method to linearly solve it. The critical step of the projected gradient method is to solve
the following proximal problem:

min
x≥0,xT 1=1

1
2
‖x − c‖2

2 (4.32)

This proximal problem can be solved using the Karush-Kuhn-Tucker approach. Then
each si can be efficiently solved, and we can get the updated graph S.

Update 𝜶 By fixing F and S, we can obtain 𝛼 by optimizing Eq. 4.26. This is equivalent
to optimizing the following objective function:

min
𝛼≥0,𝛼T 1=1

𝜇
∑

t
𝛼t

(
∑

ij
‖xt

i − xt
j‖

2
2sij

)

+ 𝛽‖𝛼‖2
2,⇒ min

𝛼≥0,𝛼T 1=1
𝜇d𝛼 + 𝛽‖𝛼‖2

2 (4.33)

where d = {dt , 1 ≤ t ≤ 𝑣} with dt =
∑

ij
‖xt

i − xt
j‖

2
2sij. It can be reformulated in the form

of the problem in Eq. 4.32 and can be solved similarly to obtain 𝛼.
We update F , S and 𝛼 iteratively until the objective function Eq. 4.26 converges.

4.3.3 Context Association Model for Action Recognition

While the previous section discusses video annotation, this section focuses on action
recognition in videos. It is inspired by the context memory model (CMM) [37] and we
can improve CMM to explore video sequences and organize the episodic information
for recognition by recollection. In this section, we describe two different memory units
in CMM, and propose our framework [38] based on them. The data in memory are
processed and maintained under this framework.
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Figure 4.6 Framework of our context memory. The sensory memory is presented for acquiring data
and incorporated into the short-term context memory.

4.3.3.1 Context Memory
There are two different memory units in CMM: short-term context memory (SCM) and
long-term context memory (LCM) units, as shown in Figure 4.6. The sensory memory
[39] is mainly used for extracting information from input data, but is omitted in CMM.
We incorporated the data mining part as the sensory model into SCM for acquiring rep-
resentations. Because permanent memory is rare, we focus on SCM and evolving units.

In this work, data acquiring, processing, and maintaining are incorporated into one
framework, as shown in Figure 4.6. SCM acquires and processes data to find meaningful
and useful information. Many algorithms fit into SCM, such as those in human detec-
tion, object tracking, action recognition, and so on. Only the messages of interest from
the obtained information will be structured and stored in LCM, and these are used for
retrieval. The data in LCM are always under memory evolution, where some can decay
or be forgotten, and some can be reinforced.

Hierarchical structure The evolving unit is a key part. Its context structure organizes the
detected context elements into an entity based on the relationships. Figure 4.7 shows
the summary of the hierarchy.

The basic element of context memory is attribute (e.g., an object, a person). An
instance is formed by several related attributes (e.g., a person is moving a box). Several
temporally consecutive instances can form a cluster (e.g., an event “arrange objects”
consists of “a person is reaching a box”, “a person is moving a box”, “a person is putting
a box” and so on). At a certain time, the memory comprises many clusters, and we call
this a snapshot, which is used for memory evolution. The context memory is dynamic
along the timeline, which means that the data in the memory can decay, be reinforced,
or be forgotten.

Temporal relations Only the static relations of attributes and instances are modeled in
CMM, where the context cluster is defined as a group of a set of context instances with
the similarity over a threshold, as shown in Figure 4.8a. However, the temporal relations
are important to depict an event in memory, and our context cluster is composed of an
ordered sequence of instances, which represents a whole event with temporal relations,
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Figure 4.7 Context structure in evolving units of LCM. A snapshot is all the contents in memory at a
specific time. The context snapshot evolves by time.
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Figure 4.8 Different definitions of the context cluster. The similar instances are grouped into a cluster
in CMM [37], as shown in (a). (b) shows the proposed cluster, which is an ordered sequence of
instances, modeling the temporal relations. (c) shows an example of our cluster.

as shown in Figure 4.8b. One example is given in Figure 4.8c, where the activity of tak-
ing medicine is described by a series of consecutive semantic segments (instances). The
organized structures and relations are then used for activity recognition.

4.3.4 Graph-based Event Video Summarization

4.3.4.1 Framework
Figure 4.9 gives an overview of our proposed mashup system [40]. Given a collection
of videos, the shots of videos are first grouped into shot cliques using a graph-based
near-duplicate detection approach. Then the semantics of those identified shot cliques
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Figure 4.9 The flowchart of the proposed event video mashup approach.

are inferred to unveil their relevance to key semantic facets of the event. Next, the
shot cliques are temporally aligned, followed by a semantic smoothing step to refine
the alignment and discover key subevents of the event. Taking into consideration both
importance and diversity factors, a shot clique selection method is performed. From
each top ranked shot clique, a shot is chosen to represent the clique. All the above steps
can be generalized as content selection. Finally, a sequence of selected shots in their pre-
viously determined order compose the final mashup video, with transition smoothness
being considered. The mashup video length can be adaptively adjusted by varying the
number of top ranked shot cliques. Among these components, graph-based temporal
alignment is a key component. Next, we introduce it.

4.3.4.2 Temporal Alignment
In this subsection, we aim to align the shot cliques in a temporal order.

First, we build a matrix L ∈ ℝn×n based on the pairwise temporal orders of shot cliques
obtained from the original videos as:

Li,j =
⎧
⎪
⎨
⎪
⎩

1 if si is before sj,

−1 if si is after sj,

0 if not determined
(4.34)

where Li,j is element (i, j) of L, si denotes the ith shot clique, and there are n shot cliques.
The temporal orders of some shot clique pairs cannot be directly observed from the
original videos, but they may be inferred via some bridging shot cliques. Based on this,
we conduct matrix completion for L:

Li,j =

{
0 → +1 if Li,p = 1, Lp,j = 1
0 → −1 if Li,p = −1, Lp,j = −1

(4.35)
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Next, we can align the shot cliques using the local temporal information contained in L.
Specifically, we assign a temporal position ti (ti ∈ {1, 2, · · · , n}, ti ≠ tj if i ≠ j) to each
shot clique si in order to maximize the match between the mined temporal orders L and
the estimated temporal orders:

t = arg max
ti,tj∈{1,2,…,n}

n∑

i=1

n∑

j=1
sgn(tj − ti)Li,j (4.36)

where sgn(x) is a sign function:

sgn(x) =

{
1 if x > 0,

−1 if x < 0
(4.37)

Eq. (4.36) is a non-deterministic polynomial-time hardness (NP-hard) problem. Alter-
natively, we propose an algorithm to approximate the optimal solution. To be specific,
we first initialize the temporal positions of the shot cliques randomly. And then swap
the temporal positions ti and tj of si and sj iteratively as long as (i) ti and tj contradict
with Li,j and (ii) the swap can increase the objective function.

We regard all the shot cliques as a graph, where the vertices are shot cliques and an
edge is added between two vertices si and sj, if Li,j ≠ 0. Then the graph can be divided into
a set of connected subgraphs, which means the inter-temporal-orders of the subgraphs
cannot be determined from the videos. In fact, these subgraphs often correspond to
independent components of the events. Since users’ interest and focus towards an event
change with the evolution of the event, we can employ users’ interest trend to estimate
the temporal orders of the independent sets of shot cliques. Upload time of video is a
good indicator of users’ interest trend about an event. Therefore, we calculate the aver-
age upload time of the videos related to the subgraphs to determine the temporal orders.

4.3.5 TGIF: A New Dataset and Benchmark on Animated GIF Description

In the previous subsections, we described our methods for video understanding, while
in this subsection, we introduce a dataset collected by ourselves. With the recent popu-
larity of animated GIFs on social media, there is need for ways to index them with rich
metadata. To advance research on animated GIF understanding, we collected a new
dataset, Tumblr GIF (TGIF) [41], with 100K animated GIFs from Tumblr and 120K nat-
ural language descriptions obtained via crowdsourcing. The motivation for this work
is to develop a testbed for image sequence description systems, where the task is to
generate natural language descriptions for animated GIFs or video clips.

4.3.5.1 Data Collection
We extracted a year’s worth of GIF posts from Tumblr using the public API,3 and cleaned
up the data with four filters:
• Cartoon. Filters out cartoon content by matching popular animation keywords to

user tags.
• Static. Discards GIFs that show little to no motion (basically static images). To detect

static GIFs, we manually annotated 7K GIFs as either static or dynamic, and trained a
random forest classifier based on C3D features [42]. The 5-fold cross validation accu-
racy for this classifier is 89.4%.

3 https://www.tumblr.com/docs/en/api/v2
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• Text. Filters out GIFs that contain text, e.g., memes, by detecting text regions using
the extremal regions detector [43] and discarding a GIF if the regions cover more than
2% of the image area.

• Dedup. Computes 64bit discrete cosine transform (DCT) image hash using
pHash [44] and applys multiple index hashing [45] to perform a k-nearest-neighbor
search (k = 100) in the Hamming space. A GIF is considered a duplicate if there are
more than 10 overlapping frames with other GIFs. On a held-out dataset, the false
alarm rate is around 2%.

Finally, we manually validated the resulting GIFs to see whether there was any cartoon,
static, or textual content. Each GIF was reviewed by at least two annotators. After these
steps, we obtained a corpus of 100K clean animated GIFs.

4.3.5.2 Data Annotation
We annotated animated GIFs with natural language descriptions using the crowdsourc-
ing service CrowdFlower. We carefully designed our annotation task with various quality
control mechanisms to ensure the sentences were both syntactically and semantically of
high quality.

A total of 931 workers participated in our annotation task. We only allowed workers
from Australia, Canada, New Zealand, UK and the USA in an effort to collect fluent
descriptions from native English speakers. Figure 4.10 shows the instructions given to

Below you will see five animated GIFs. Your task is to describe each
animated GIF in one English sentence. You should focus solely on the visual

content presented in the animated GIF. Each sentence should be
grammatically correct. It should describe the main characters and their
actions, but NOT your opinions guesses or interpretations.

Task

DOs

DONTs

• Please use only English words. No digits allowed (spell them out, e.g.,
 three).
• Each sentence must contain between 8 and 25 words. Try to be concise.
• Each sentence must contain a verb.
• If possibe, include adjectives that describe colors, size, emotions, or
 quantity.
• Please pay attention to grammar and spelling.
• Each sentence must express a complete idea, and make sense by itself.
• The sentence should describe the main characters, actions, setting, and
 relationshiup between the objects.

• The sentence should NOT contain any digits.
• The sentence should NOT mention the name of a movie, film, and
 character.
• The sentence should NOT mention invisible objects and actions.
• The sentence should NOT make subjective judgments about the GIF.

Remember, please describe only the visual content presented in the
animated GIF. Focus on the main characters and their actions.

Figure 4.10 The instructions for the crowdworkers.
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the workers. Each task showed five animated GIFs and asked the worker to describe
each with one sentence. To promote language style diversity, each worker could rate no
more than 800 images (0.7% of our corpus). We paid 0.02 USD per sentence; the entire
crowdsourcing cost less than 4K USD.

Syntactic validation Since the workers provided free-form text, we automatically vali-
dated the sentences before submission. We checked that each sentence

• contains at least 8, but no more than 25 words (white space separated)
• contains only ASCII characters
• does not contain profanity (checked by keyword matching)
• is typed, not copy/pasted (checked by disabling copy/paste on the task page)
• contains a main verb (checked by using standard position tagging [46])
• contains no named entities, such as the name of an actor/actress, movie, or country

(checked by the Named Entity Recognition results from DBpedia spotlight [47]) and
• is grammatical and free of typographical errors (checked by the LanguageTool4 ).

This validation pipeline ensures sentences are syntactically good. But it does not
ensure their semantic correctness, i.e., there is no guarantee that a sentence accurately
describes the corresponding GIF. We therefore designed a semantic validation pipeline,
described next.

Semantic validation Ideally, we wanted to validate the semantic correctness of every
submitted sentence (as we did for syntactic validation), but this was impractical. Instead
we used the “blacklisting” approach, where we identified workers who underperformed
and blocked them accordingly.

We annotated a small number of GIFs and used them to measure the performance
of workers. We collected a validation dataset with 100 GIFs and annotated each with
10 sentences using CrowdFlower. We carefully hand-picked the GIFs whose visual story
was clear and unambiguous. After collecting the sentences, we manually reviewed and
edited them to make sure they met our standard.

Using the validation dataset, we measured the semantic relatedness of sentence
to GIF using METEOR [48], a metric commonly used within the natural language
processing (NLP) community to measure machine translation quality. We compare
a user-provided sentence to 10 reference sentences using the metric and accepted a
sentence if the METEOR score was above a threshold (empirically set at 20%). This
filtered out junk sentences, e.g., “this is a funny GIF taken in a nice day,” but retained
sentences with similar semantic meaning as the reference sentences.

We used the dataset in both the qualification and the main tasks. In the qualifica-
tion task, we provided five GIFs from the validation dataset and approved a worker if
they successfully described at least four tests. In the main task, we randomly mixed one
validation question with four main questions; a worker was blacklisted if the overall
approval rate on validation questions fell below 80%. Because validation questions were
indistinguishable from normal task questions, workers had to continue to maintain a
high level of accuracy in order to remain eligible for the task.

As we ran the CrowdFlower task, we regularly reviewed failed sentences and, in
the case of a false alarm, we manually added the failed sentence to the reference

4 https://languagetool.org/
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sentence pool and removed the worker from the blacklist. Rashtchian et al. [49] and
Chen et al. [50] used a similar prescreening strategy to approve crowdworkers; our
strategy to validate sentences during the main task is unique to our work.

4.3.6 Experiments

We evaluated our algorithm on the task of image and video annotation. Due to the space
limitations, we do not show the results for sections 4.3.3 and 4.3.4. First, we studied
the influence of the parameters in our algorithm. Then, we compared our results with
state-of-the-art algorithms on four standard datasets.

4.3.6.1 Experimental Settings

4.3.6.1.1 Datasets
We considered four publicly available datasets that have been widely used in previ-
ous work.

IXMAS This video dataset consists of 12 action classes (e.g., check watch, cross arms,
and scratch head). Each action is executed three times by 12 actors and is recorded with
five cameras observing the subjects from very different perspectives.

NUS-WIDE This image dataset contains 269,648 images downloaded from Flickr. Tag-
ging ground truth for 81 semantic concepts is provided for evaluation. Similar to [51], we
only use the images associated with the 10 most frequent concept annotations, obtaining
167,577 images in total.

For IXMAS, we use half of the tagged data to infer the tags for the rest of the data. For
the other dataset, out-of-sample extension is utilized to annotate the test data points.
We randomly selected 10,000 data points for training, and used the rest for testing. In
the training dataset, partial data points are with tags.

4.3.6.1.2 Features
For IXMAS, we extracted the 500-D bag of words (BoW) feature based on SIFT for each
camera, and the five cameras are taken as five features, following [52]. For NUS-WIDE,
six types of low-level features are provided, including 64-D color histogram, 144-D color
correlogram, 73-D edge direction histogram, 128-D wavelet texture, 225-D block-wise
color moments, and 500-D BoW based on SIFT descriptions.

4.3.6.1.3 Baseline Methods and Evaluation Metrics
To evaluate the performance of the optimal graph, we compared OGL with different
graph construction methods, e.g., LGC [31], LLE [53], and L2graph [54]. We further
extended and compared all these methods on larger datasets by out-of-sample exten-
sion. We also compared them against TagProp [55] and fastTag [56] algorithms, which
currently achieve the best performance on the benchmark datasets. To test different
fitting models, we combined OGL with fastTag to check the performance. We also com-
pared them with MBRM [57] and JEC [58].

We evaluated our models with standard performance measures:
Precision vs recall over each label is calculated by computing the precision at each

recall.
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Mean average precision (MAP) over labels is calculated by computing for each label
the average of the precisions measured after each relevant image is retrieved.

4.3.6.2 Results
Figure 4.11 shows the comparisons for the two datasets. We also show some qualitative
results in Figure 4.11c. From these figures, we have the following observations:

• By learning an optimal graph from partial tags and multiple features, the performance
for image and video annotation is improved significantly compared with other graph
construction methods. This indicates that using partial tags and multiple features can
result in a better graph.

• The improvement of OGL over other methods is more significant for the IXMAS
dataset than for the other datasets. This is probably because out-of-sample exten-
sion will reduce the performance gaps of different methods. L2Graph is a strong
competitor in all cases, while LGC achieves the worst performance in all datasets.
This indicates that a reconstruction coefficients-based graph is better than pairwise
distance-based graphs in these datasets.

• Compared with other state-of-the-art non-graph-based methods, our OGL outper-
forms most of the existing approaches and achieves comparable performance with
the current best result.

(c) Qualitative results on IXMAS dataset
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Figure 4.11 Experiment results on four datasets.
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• From the qualitative results in Figure 4.11c, we can see that OGL can annotate the
videos more precisely in the IXMAS dataset than LLE. This is because OGL makes use
of both tags and multiple features, and automatically decides their weights, while LLE
considers visual features only. In this case, OGL is more robust to some inaccurate
visual features (e.g., light) or the tags, but LLE is more sensitive to these changes.

4.4 Conclusions and Future Work

In this work we cover video annotation, retrieval, and summarization, three approaches
to fight the consequences of big video data. We present the state-of-the-art
research in each of the research field. Specifically, we discuss both unsupervised
and semi-supervised methods to facilitate video understanding tasks. We consider two
general research problems: video retrieval and video annotation/summarization. While
the former focuses on designing efficient algorithms for retrieving useful information
from large-scale data, the latter aims to reduce the size of the data. Video retrieval
provides new models and methods for effectively and efficiently searching through the
huge variety of video data that are available in different kinds of repositories (digital
libraries, Web portals, social networks, multimedia databases, etc.). On the other
hand, video annotation/summarization generates annotations or a short summary of
a video. It provides efficient storage and quick browsing of large collection of video
data without losing important aspects. Depending on whether or not human labels are
involved, video retrieval and annotation/summarization can be further categorized
into unsupervised and semi-supervised based methods. In the future, we will consider
applying our video understanding methods to more real-world applications, e.g.,
surveillance, video advertising, and short video recommendations.
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